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1 Introduction

These notes collect some fundamental ideas in representation theory of finite (and, briefly, compact)
groups, with a particular emphasis on the regular representation, character theory, and a standard
lemma for bounding distances between probability measures on a group. They are intended for an
upper-level undergraduate who has some familiarity with linear algebra, group theory, and basic
concepts of analysis (like norms and metrics on finite-dimensional vector spaces).

We begin by introducing the notion of total variation distance for probability measures, prove
a simple lemma relating it to the ℓ1-norm, and then connect this to the idea of characters and
irreducible representations in the abelian and non-abelian settings. We also highlight the role of the
regular representation, orthogonality relations, and (in the finite setting) how one can diagonalize
representations in the abelian case. Finally, we briefly touch on the analog for compact groups and
the Peter–Weyl theorem.
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2 Total Variation Distance on Probability Measures

Let G be a finite group. A probability measure P on G is a function P : G → [0, 1] such that∑
g∈G

P (g) = 1.

Often, we think of P as putting mass P (g) at the point g.

Definition 2.1 (Total Variation Distance). Given two probability measures P and Q on a finite
set G, the total variation distance between them is defined as

∥P −Q∥TV = max
A⊆G

∣∣P (A)−Q(A)
∣∣ = max

A⊆G

∣∣∣∑
g∈A

[P (g)−Q(g)]
∣∣∣.

Lemma 2.2. For two probability measures P and Q on G,

∥P −Q∥TV = 1
2∥P −Q∥1,

where ∥P −Q∥1 =
∑

g∈G |P (g)−Q(g)|.

Proof. Let f(g) = P (g)−Q(g). Then

∥P −Q∥TV = max
A⊆G

∣∣∣∑
g∈A

f(g)
∣∣∣.

A standard argument (often in basic probability theory) shows that maxA⊆G

∣∣∑
g∈A f(g)

∣∣ = 1
2

∑
g∈G |f(g)|.

(The idea is to choose A to contain exactly those g for which f(g) ≥ 0, maximizing the absolute
sum in one direction or the other.) Thus

∥P −Q∥TV = 1
2

∑
g∈G

|f(g)| = 1
2∥P −Q∥1.

3 Representations of Finite Groups

We now turn to basic representation theory. Our main interest is in how finite groups act on vector
spaces, and how we can use characters to glean information about these actions.

Definition 3.1 (Representation). Let G be a finite group. A (complex) representation of G is a
group homomorphism

ρ : G → GL(V ),

where V is a finite-dimensional complex vector space and GL(V ) is the group of invertible linear
operators on V . Equivalently, it is a way for G to act on V by linear transformations.

Definition 3.2 (Irreducible Representation). A representation ρ : G → GL(V ) is said to be
irreducible (or simple) if V has no proper, non-zero, ρ(G)-invariant subspaces. In other words, the
only subspaces of V invariant under the action of all ρ(g) (g ∈ G) are {0} and V itself.
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Definition 3.3 (Character). Given a representation ρ : G → GL(V ), its character is the function
χρ : G → C defined by

χρ(g) = trace
(
ρ(g)

)
.

Two key facts (whose proofs can be found in standard texts) are:

1. Every finite-dimensional representation of a finite group completely reduces into a direct sum
of irreducibles.

2. Characters form an orthonormal set with respect to a certain inner product (the orthogonality
relations).

4 The Regular Representation

A central example in the representation theory of finite groups is the regular representation.

Definition 4.1 (Group Algebra C[G] and Regular Representation). The group algebra C[G] is
the vector space over C with basis {eg : g ∈ G}, whose dimension is |G|. An element of C[G] is of
the form ∑

g∈G
ageg, ag ∈ C.

There is a natural left regular action of G on C[G] given by left multiplication:

h · eg = ehg, (1)

extended linearly. This action defines the regular representation, denoted ρreg.

Proposition 4.2 (Character of the Regular Representation). Let ρreg be the regular representation
of G. Then its character χreg satisfies:

χreg(g) =

{
|G|, if g = e,

0, if g ̸= e.

Sketch of Proof. Under ρreg(g), the basis vector eh is sent to egh. If g ̸= e, then no basis vector is
fixed, and the permutation of basis vectors has no fixed points. Hence its trace is 0. If g = e, the
identity map fixes every basis vector eh, so its trace is the full dimension, |G|.

Theorem 4.3 (Decomposition of the Regular Representation). Every irreducible representation ρi
of G appears in the regular representation ρreg with multiplicity equal to its dimension. Concretely,

ρreg ∼=
r⊕

i=1

ρ
⊕ dim(ρi)
i ,

where ρ1, ρ2, . . . , ρr are all the distinct irreducible representations of G.
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Corollary 4.4 (Orthogonality Relation for Characters). Let {χi}ri=1 be the characters of the dis-
tinct irreducible representations of G. Then

r∑
i=1

dim(ρi)χi(g) = 0 for all g ̸= e,

and equals |G| when g = e. Equivalently, if you sum up dim(ρi)χi over all irreps, you get the
character of the regular representation.

Proof. This follows immediately from the decomposition of ρreg and the fact that χreg(g) = 0 for
g ̸= e and |G| for g = e.

5 The Abelian Case

If G is abelian, then every irreducible representation has dimension 1. Indeed, a standard theorem
asserts:

Theorem 5.1. If G is a finite abelian group, then it has |G| distinct irreducible representations,
each of which is one-dimensional. Equivalently, each irreducible character is a group homomorphism
χ : G → C×.

Idea of Proof. Since G is abelian, every representation can be simultaneously diagonalized (in a
suitable basis) by Schur’s Lemma. A nontrivial block of dimension > 1 would yield non-commuting
matrices if the representation were irreducible. Thus all irreps are 1-dimensional.

Example 5.2. If G = Zn = ⟨x | xn = e⟩, then each irreducible character χk is given by

χk(x
m) = e2πikm/n, k = 0, 1, . . . , n− 1.

Hence there are exactly n irreps, all of dimension 1.

5.1 Fourier Transform on a Finite Abelian Group

WhenG is abelian, the collection of all irreps (i.e., characters) Ĝ itself forms a group under pointwise
multiplication, often called the dual group. The map

f : G → C 7→ f̂ : Ĝ → C,

where
f̂(χ) =

∑
g∈G

f(g)χ(g),

is the Fourier transform on G. This is a powerful tool for analyzing probability measures on abelian
groups (e.g. random walks), relating the distribution to its character table.
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6 Applications to Probability Measures and the Upper Bound
Lemma

One important application (popularized by Persi Diaconis and others) is to bound how quickly a
random walk on G converges to the uniform distribution in total variation distance. The key tool
is to analyze the Fourier transform (or characters) of the distribution of the random walk.

Remark 6.1 (Upper Bound Lemma in Random Walks). There is a well-known Upper Bound
Lemma (cf. Diaconis) stating that if P is a probability measure on G describing one step of a
random walk, then

∥P ∗t − U∥TV ≤ 1

2

∑
ρ irreps
ρ ̸=ρtrivial

dim(ρ)
∣∣λρ(P )

∣∣t,
where P ∗t is the t-fold convolution of P with itself, U is the uniform measure on G, and λρ(P ) are
certain Fourier coefficients (eigenvalues) associated to ρ. This inequality encapsulates how fast the
random walk’s distribution mixes toward uniform.

We will not go into the full proof here, but the essential idea is to decompose the convolution
operator on C[G] into irreducible subrepresentations and then use the fact that each subrepresenta-
tion provides a distinct eigenvalue. The trivial representation contributes the uniform distribution
in the limit, and all other irreps typically contract.

7 Brief Mention of the Compact Case: Peter–Weyl Theorem

For a compact (possibly infinite) group K, there is an analog of these results known as the Peter–
Weyl theorem. It says that every (continuous) representation of a compact group on a finite-
dimensional Hilbert space decomposes into irreducibles, and that the space L2(K) can be viewed
as the (possibly infinite) direct sum of all irreps. In particular, for compact Lie groups such as
SO(3) or SU(2), one obtains a beautiful theory of matrix coefficients and spherical harmonics.

In the finite case, the Peter–Weyl theorem reduces to the statement that C[G] decomposes into
irreps exactly as we saw with the regular representation. For infinite compact groups, integrals
replace sums, and one obtains the same type of orthogonality relations in an L2-sense.

8 Summary

These notes illustrate how representation theory—especially the decomposition of the regular rep-
resentation and the use of characters—can be used to understand fundamental questions about
distributions on finite groups (like measuring distance in total variation). Key points include:

• The total variation distance on probability measures and its relationship to the ℓ1-norm.

• The definition and decomposition of the regular representation, whose character is |G| at the
identity and 0 elsewhere.

• Orthogonality relations and how the sum of dim(ρi)χi over all irreps ρi recovers the regular
character.
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• In the abelian case, all irreps are 1-dimensional, which greatly simplifies the character theory
(and leads to the classical discrete Fourier transform).

• Applications to random walks on groups (the Upper Bound Lemma) and the analogy with
the Peter–Weyl theorem in the compact case.

For more details, see standard references such as:

• Serre, Linear Representations of Finite Groups.

• Diaconis, Group Representations in Probability and Statistics.

• Fulton and Harris, Representation Theory: A First Course.
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